Managing and Mining Billion-Node Graphs

Haixun Wang
Microsoft Research Asia
Our Focus

System & Graph Processing
Outline

• Large Graph Challenges

• Systems for Large Graphs
 – RDBMS, Map Reduce, Pregel, Pegasus, Trinity

• Key Graph Algorithms
 – Graph Partitioning, Traversal, Query, Analytics
Outline

• Large Graph Challenges

• Systems for Large Graphs
 – RDBMS, Map Reduce, Pregel, Pegasus, Trinity

• Key Algorithms
 – Graph Partitioning, Traversal, Query, Analytics
Graphs encode rich relationships

<table>
<thead>
<tr>
<th></th>
<th># of Nodes</th>
<th># of Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Road Map</td>
<td>58 million</td>
<td>5 million</td>
</tr>
<tr>
<td>Facebook</td>
<td>31 billion</td>
<td>5 trillion</td>
</tr>
<tr>
<td>Linked Data</td>
<td>5.6 billion</td>
<td>8 trillion</td>
</tr>
<tr>
<td>the Web</td>
<td>1 trillion</td>
<td>1 trillion</td>
</tr>
<tr>
<td>De Bruijn Graph</td>
<td>1 trillion</td>
<td>8 trillion</td>
</tr>
</tbody>
</table>
Diversity of Graphs

\[P(k) \sim k^{-a} \]

Scale Free Graphs Community Structure Small World
A Large Variety of Graph Operations

• Online query processing
 – Shortest path query
 – Subgraph matching query
 – SPARQL query
 – ...

• Offline graph analytics
 – PageRank
 – Community detection
 – ...

• Other graph operations
 – Graph generation, visualization, interactive exploration, etc.
Current Status

• Good systems for processing *graphs*:
 – PBGL, Neo4j

• Good systems for processing *large data*:
 – Map/Reduce, Hadoop

• Good systems for processing specialized *large graph data*:
 – Specialized systems for pagerank, etc.
This is hard.

No good system for processing general large graphs
Graph processing without a system is hard!

Fundamental issues
- scheduling, data distribution, synchronization, inter-process communication, robustness, fault tolerance, ...

Architectural issues
- Flynn’s taxonomy (SIMD, MIMD, etc.), network typology, bisection bandwidth
- UMA vs. NUMA, cache coherence

Different programming constructs
- mutexes, conditional variables, barriers, ...
- masters/slaves, producers/consumers, work queues, ...

Different programming models
- Message Passing
- Shared Memory

Common problems
- livelock, deadlock, data starvation, priority inversion...
- dining philosophers, sleeping barbers, cigarette smokers, ...

Programmer shoulders the burden of managing all these subtle issues...

Adapted from: Jimmy Lin, SIKS/BigGrid Big Data Tutorial (2011)
Benefits of a general purpose system

• Enable applications to focus on algorithm rather than system implementation

• Support a variety of algorithms on the same graph data in the same platform

• Support various types of graphs
Challenges
Graph Data is “Special”

• Poor locality (random access is required)
 – Accessing a node’s neighbor requires “jumping” around no matter how the graph is represented.

• Data or graph structure driven
 – Computation is dictated by graph structure
Challenges of Online Query

Two examples:

- Online graph exploration
- Sub-graph matching
Online graph exploration

• Challenge
 – Limited time budget: \(\frac{1}{4} \) second
 – Large number of nodes to visit: \(2,214,030 \)
Subgraph matching

Procedure:

1. Break a graph into basic units (edges, paths, frequent sub-graphs, ...)

2. Build index for every possible basic unit

3. Decompose a query into multiple basic unit queries, and join the results.
Subgraph matching in large graphs

• Graph indices
 – Time: 2-hop reachability index requires $O(n^4)$ construction time
 – Space: Depending on the structure of the basic unit. In many cases, super linear.

• Multi-way joins
 – Costly for disk resident data
Query Index Examples

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Index Size</th>
<th>Index Time</th>
<th>Update Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ullmann [Ullmann76], VF2 [CordellaFSV04]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RDF-3X [NeumannW10]</td>
<td>$O(m)$</td>
<td>$O(m)$</td>
<td>$O(d)$</td>
</tr>
<tr>
<td>BitMat [AtreCZH10]</td>
<td>$O(m)$</td>
<td>$O(m)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>Subdue [HolderCD94]</td>
<td>-</td>
<td>Exponential</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>SpiderMine [ZhuQLYHY11]</td>
<td>-</td>
<td>Exponential</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>R-Join [ChengYDYW08]</td>
<td>$O(nm^{1/2})$</td>
<td>$O(n^4)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Distance-Join [ZouCO09]</td>
<td>$O(nm^{1/2})$</td>
<td>$O(n^4)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>GraphQL [HeS08]</td>
<td>$O(m + nd^T)$</td>
<td>$O(m + nd^r)$</td>
<td>$O(d^T)$</td>
</tr>
<tr>
<td>Zhao [ZhaoH10]</td>
<td>$O(nd^T)$</td>
<td>$O(nd^r)$</td>
<td>$O(d^L)$</td>
</tr>
<tr>
<td>GADDI [ZhangLY09]</td>
<td>$O(nd^L)$</td>
<td>$O(nd^L)$</td>
<td>$O(d^L)$</td>
</tr>
</tbody>
</table>

Index-based subgraph matching [Sun2012]
Query Index Examples

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>Index Size for Facebook</th>
<th>Index Time for Facebook</th>
<th>Query Time on Facebook (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ullmann [Ullmann76], VF2 [CordellaFSV04]</td>
<td>-</td>
<td>-</td>
<td>>1000</td>
</tr>
<tr>
<td>RDF-3X [NeumannW10]</td>
<td>1T</td>
<td>>20 days</td>
<td>>48</td>
</tr>
<tr>
<td>BitMat [AtreCZH10]</td>
<td>2.4T</td>
<td>>20 days</td>
<td>>269</td>
</tr>
<tr>
<td>Subdue [HolderCD94]</td>
<td>-</td>
<td>>67 years</td>
<td>-</td>
</tr>
<tr>
<td>SpiderMine [ZhuQLHYHY11]</td>
<td>-</td>
<td>>3 years</td>
<td>-</td>
</tr>
<tr>
<td>R-Join [ChengYDYW08]</td>
<td>>175T</td>
<td>>10^{15} years</td>
<td>>200</td>
</tr>
<tr>
<td>Distance-Join [ZouCO09]</td>
<td>>175T</td>
<td>>10^{15} years</td>
<td>>4000</td>
</tr>
<tr>
<td>GraphQL [HeS08]</td>
<td>>13T(r=2)</td>
<td>>600 years</td>
<td>>2000</td>
</tr>
<tr>
<td>Zhao [ZhaoH10]</td>
<td>>12T(r=2)</td>
<td>>600 years</td>
<td>>600</td>
</tr>
<tr>
<td>GADDI [ZhangLY09]</td>
<td>>2 × 10^5 T (L=4)</td>
<td>>4 × 10^5 years</td>
<td>>400</td>
</tr>
</tbody>
</table>

Index-based subgraph matching [Sun2012]
Challenges of Offline Analytics

• Offline analytics requires high throughput

• Unstructured nature of graph
 – Difficult to achieve parallelism by partitioning data
 – Hard to get an efficient “Divide and Conquer” solution

• High data-access to computation ratio
 – Huge amount of disk I/O
Design Choices
System Design Choice

• Storage
 – Disk-based storage vs. Memory-based storage

• Scale-“UP” vs. Scale-“OUT”
 – Supercomputer vs. distributed cluster
Technical Trend

• Now: A commodity PC server has dozen gigabytes of memory

• Future: High-capacity memory and all-in-memory applications
Trend in Cost of Memory Storage

<table>
<thead>
<tr>
<th></th>
<th>Today</th>
<th>In 5-10 years</th>
</tr>
</thead>
<tbody>
<tr>
<td># servers</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>GB/server</td>
<td>64GB</td>
<td>1024GB</td>
</tr>
<tr>
<td>Total capacity</td>
<td>64TB</td>
<td>1PB</td>
</tr>
<tr>
<td>Total server cost</td>
<td>$4M</td>
<td>$4M</td>
</tr>
<tr>
<td>$/GB</td>
<td>$60</td>
<td>$4</td>
</tr>
</tbody>
</table>

Adapted from: John Ousterhout, RAMCloud, 2010
Total Cost of Ownership

Dataset Size (TB)

Hard disk

Flash Memory

RAM

Query Rate (Millions/sec)

Billion Scale Graph

Reproduced from Anderson’s SOSP 2009 paper
Design Choice: Storage

1. Massive random data access pattern
2. lower total cost of ownership

RAM can be ideal main storage for graphs
Design Choice: Scale-up vs. Scale-out

• Supercomputer model
 – Programming model simple and efficient
 • shared memory address space
 – Expensive and not common
 – Hardware is your ultimate limit

• Distributed cluster model
 – Programming model is complex
 • Message passing and synchronization is more complex
 – Relatively cheaper and can make use of commodity pc
 – More flexible to meet various needs
Outline

• Large Graph Challenges

• Systems for Large Graphs
 – RDBMS, Map Reduce, Pregel, Pegasus, Trinity

• Key Algorithms
 – Graph Partitioning, Traversal, Query, Analytics
Existing Systems

• Systems specialized for certain graph operations:
 – PageRank

• Systems designed for non-graph data
 – RDBMS
 – Map Reduce

• Graph Systems
 – Libraries for graph operations, e.g. PBGL
 – Matrix-based graph processing system, e.g. Pegasus
 – Graph database, e.g. Neo4j, HypergraphDB, Trinity
 – Graph analytics system, e.g. Pregel, Trinity, Giraph,
RDBMS

• Mainstay of business
 – Strong data integrity guarantee via ACID transactions

• Support complex queries
 – Standard query language: SQL

• Limited graph query support
 – Oracle (RDF query support)
Traverse Graph Using Joins

Node Table: N

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>....</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N1</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>N2</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>N3</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>N4</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>N5</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>N6</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Edge Table: E

<table>
<thead>
<tr>
<th>src</th>
<th>dst</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Get Neighbors of N1

```
SELECT *
FROM N
LEFT JOIN E ON N.ID = E.dst
WHERE E.src = 1;
```
Graph in the Jail of RDBMS

• The commonest graph operation “traversal” incurs excessive amount of table joins

• RDBMS: Mature techniques but not for graphs
Map Reduce
Map Reduce

• High latency, yet high throughput general purpose data processing platform

• Optimized for offline analytics on large data partitioned on hundreds of machines
Map Reduce

• De facto of distributed large data processing

• Great scalability: supports extremely large data
Processing Graph using Map Reduce

• No online query support

• The map reduce data model is not a native graph model
 – Graph algorithms cannot be expressed intuitively

• Graph processing is inefficient on map reduce
 – Intermediate results of each iteration need to be materialized
 – Entire graph structure need to be sent over network iteration after iteration, this incurs huge unnecessary data movement
Pregel
Basic Idea: Think Like a Vertex!

- Mapping from graph nodes to virtual BSP processors
- Local Computation
- Global Communication
- Barrier Synchronization
Computation Model

• Graph computation is modeled as many supersteps
• Each vertex reads messages sent in previous superstep
• Each vertex performs computation in parallel
• Each vertex can send messages to other vertices in the end of an iteration
Example: SSSP in Pregel

![Graph with nodes A, B, C, D and edge weights](image)

- Source node:
- Node A connected to source with weight 1
- Node B connected to source with weight 2
- Node C connected to source with weight 8
- Node D connected to source with weight 10

Nodes connected with:
- A to B with weight 3
- A to C with weight ∞ (infinity)
- B to D with weight 1
- C to D with weight 1
Example: SSSP in Pregel
Example: SSSP in Pregel
Example: SSSP in Pregel
Example: SSSP in Pregel
Pregel vs. Map Reduce

• Exploits fine-grained parallelism at node level

• Pregel doesn’t move graph partitions over network, only messages among nodes are passed at the end of each iteration

• Not many graph algorithms can be implemented using vertex-based computation model elegantly
Pegasus: Peta-Scale Graph Mining
Pegasus

• An open source large graph mining system
 – Implemented on Hadoop

• Key Idea
 – Convert graph mining operations into iterative matrix-vector multiplication
Data Model of Pegasus

• Use vectors and matrices to represent graphs

• Specifically:
 – a graph with n vertices is represented by an $n \times n$ matrix
 – each cell (i, j) in the matrix represents an edge
 ($source = i, destination = j$)
Example

G1 G5 G7

Source: Pegasus, Kevin Andryc, 2011
Generalized Iterated Matrix-Vector Multiplication (GIM-V)

\[M \times v = v' \quad \text{where} \quad v'_i = \sum_{j=1}^{n} m_{i,j} \times v_j \]

- Three primitive graph mining operations
 - \textit{combine2()}: Multiply \(m_{i,j} \) and \(v_j \)
 - \textit{combinAll}_i() : Sum \(n \) multiplication results
 - \textit{assign()} : Update \(v_j \)
Graph Mining in Pegasus

- Graph mining is carried out by customizing the three operations
 - combine2()
 - combineAll()
 - assign()
Example: Connected Components

Source: Pegasus, Kevin Andryc, 2011
Graph Mining

<table>
<thead>
<tr>
<th>Operations</th>
<th>Plain M-V</th>
<th>PageRank</th>
<th>RWR</th>
<th>Diamet er</th>
<th>Conn. Comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>combine2()</code></td>
<td>Multiply</td>
<td>Multiply with c</td>
<td>Multiply with c</td>
<td>Multiply bit-vector</td>
<td>Multiply</td>
</tr>
<tr>
<td><code>combineAll()</code></td>
<td>Sum</td>
<td>Sum with prob. of random jump</td>
<td>Sum with restart prob.</td>
<td>BIT-OR()</td>
<td>MIN</td>
</tr>
<tr>
<td><code>assign()</code></td>
<td>Assign</td>
<td>Assign</td>
<td>Assign</td>
<td>BIT-OR()</td>
<td>MIN</td>
</tr>
</tbody>
</table>

Source: Pegasus, Kevin Andryc, 2011
Pegasus

• Matrix based graph mining platform

• Support large scale graphs

• Many graph operations cannot be modeled by matrix-vector multiplications
Not a very natural programming model

\[c^{h+1} = M \times G c^h \]

\[c^h_i = \text{assign}(c^h_i, \text{combineAll}_i(\{x_j \mid j = 1..n, \text{ and } x_j = \text{combine2}(m_{i,j}, c^h_j)\})) \]

Adapted from: Pegasus, Kevin Andryc, 2011
Trinity: Distributed Graph Engine
Trinity

- A distributed, in-memory key/value store
- A graph database for online query processing
- A parallel platform for offline graph analytics
All-in-memory General Purpose Graph Engine

- RAMCloud
- Pregel
- Trinity
- Graph Databases (e.g. Neo4j)
Memory Cloud
Distributed Memory Cloud

• Provides fast random access over large scale graphs

• Fast graph exploration can be implemented based on memory cloud
Memory Management

• Efficient memory management is crucial to an in-memory system

• Memory Management in Trinity
 – Ring Memory Management
 – Hash Memory Storage
Ring Memory Management

![Diagram of Ring Memory Management]

- **TrunkPtr**
- **Committed Tail**
- **Committed Head**
- **Preserved Memory**
- **Append Head**
- **Memory Trunk Memory Space**
Circular Movement

Memory Expansion

Head

Reserved Memory

Tail

Committed Memory

Memory Defragmentation
Hash Storage

<table>
<thead>
<tr>
<th>head</th>
<th>id</th>
<th>links</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>head</td>
<td>id</td>
<td>links</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>head</td>
<td>id1</td>
<td>links</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>links</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chaining:

- Links... ... -1
Graph Update: An extreme case

parallel execution in the entire cluster

edge #: 10 B

node #: 1 B

graph type
Case Study:
Trinity Graph Generation
Example: People Search Query
Cell-based Graph Model
Modeling a graph

• Basic data structure: Cell

• A graph **node** is a Cell

• A graph **edge** may or may not be a Cell
 – Edge has no info
 – Edge has very simple info (e.g., label, weight)
 – Edge has rich info: an independent cell
Data Model

Graph Model

Graph Operations
- GetInlinks(), GetOutlinks(), etc

Key-Value Interfaces
- LoadBlob
- SaveBlob
- RemoveBlob

Manipulate Cell As A Whole

In-place Blob Update

Partial Update

Memory Storage

Key-Value Data Store
Memory cloud provides join-free fast exploration through relationships.

RDBMS provides additional storage and access methods, and persistence.
Trinity Specification Language
TSL

• Declaration of
 – Data schema and schema mapping
 – Indexing
 – Message passing protocols
Cell Structure

- GID
- Topology Data
- Additional Data

Cell ID

Cell Structure
• Mapping
 – a field can reside on Trinity, on RDBMS, or on both

• Index
 – option of index: exact, full-text, spatial
All-in-memory General Purpose Graph Engine

RAMCloud

Pregel

Trinity

Graph Databases (e.g. Neo4j)

Applications

Algorithms

Programming models

Computation platform

Query processing engine

Storage infrastructures

Trinity
Summary

• Building a general purpose large scale graph system is important but very challenging

• Memory-based scale-out approach is very promising
Outline

• Large Graph Challenges

• Systems for Large Graphs
 – RDBMS, Map Reduce, Pregel, Pegasus, Trinity

• Key Graph Algorithms
 – Graph Partitioning, Traversal, Query, Analytics
Outline

- Graph partitioning
 - On distributed machines

- Graph Traversal
 - BFS

- Graph queries
 - Shortest distance query

- Graph analytics
 - Betweenness computation

- Graph is big
 - billion node graphs

- Graph is distributed
 - Instead of centrically stored

- Solutions should be general enough to run on a general-purpose graph system
Graph partitioning
Graph Partitioning

• Problem definition
 – Divide a graph into k almost equal-size parts, such that the number of edges among them is minimized.

• Why?
 – Load balance
 – Reduce communication

• NP-complete [Garey74]

• Example: BFS on the graph
 – Best partitioning needs 3 remote accesses
 – Worst partitioning needs 17
Graph partitioning in current systems

• Default: *Random partitioning*
 – PBGL, Pregel, neo4j, InfiniteGraph, HyperGraphDB
 – Quality is significantly worse than a refined method

• No partitioning algorithm is supported at the system level

• PBGL and Pregel support *user-defined partitioning*
Existing graph partitioning algorithms

• Classical partitioning algorithm
 – Swapping selected node pairs: KL [kernighan 72] and FM [Fiduccia 82]
 – Simulated annealing based solutions [Johnson89]
 – Genetic algorithms [Bui96]
 – For small graphs (but with high quality)

• Multi-level partitioning solutions
 – METIS [Karypis95], Chaco [Hendrickson] and Scotch [Pellegrini96]
 – For million-node graphs

• Parallelized Multi-level partitioning solutions
 – ParMetis [Karypis98] and Pt-Scotch [Chevalier08].
 – For at most tens-of-million-node graphs.

• No good solutions for partitioning billion-node graphs on a general-purpose distributed system.
State-of-art method: Metis

• A multi-level framework
• Three phrases
 – Coarsening by maximal match until the graph is small enough
 – Partition the coarsest graph by KL algorithm [kernighan 72]
 – Uncoarsening

[Metis 1995]
Maximal Matching

• A matching of a graph $G(V,E)$ is a subset E_m of E such that no two edges in E_m share an endpoint

• A maximal matching of a graph $G(V,E)$ is a matching E_m to which no more edges can be added and remain a matching

• Find a maximal matching using simple greedy algorithms
Maximal Matching - Example

Edges in red are a maximal matching

How to coarsen a graph using a maximal matching

\[G = (N, E) \]

\[E_m \text{ is shown in red} \]

\[\text{Edge weights shown in blue} \]

\[\text{Node weights are all one} \]

\[G_c = (N_c, E_c) \]

\[N_c \text{ is shown in red} \]

\[\text{Edge weights shown in blue} \]

\[\text{Node weights shown in black} \]

Coarsening in Metis

• Assumption of coarsening: An optimal partitioning on a coarser graph is a good partitioning in the finer graph.

• It holds *only when node degree is bounded* (2D, 3D meshes).

• But real networks have *skewed degree distribution*.
Possible solution: Multi-level Label Propagation

- Coarsening by label propagation
 - In each iteration, a vertex takes the label that is prevalent in its neighborhood as its own label.

- Lightweight
 - Easily implemented by message passing
 - Easily parallelizable

- Effective (for real networks)
 - Capable of discovering inherent community structures
How to handle imbalance?

• Imbalance caused by label propagation
 – Too many small clusters
 – Some extremely large clusters

• Possible solution:
 – First, limit the size of each cluster
 – Second, merge small clusters by
 • multiprocessor scheduling (MS)
 • weighted graph partitioning (WGP)

• For details:
 – How to partition a billion node graph, Microsoft Technical Report, 2012
Distance Oracle
Shortest distance query

• A basic graph operator
 – Used in many graph algorithms, including computing centrality, betweenness, etc.

• Exact shortest distance solutions
 – Online computation
 • Dijkstra-like algorithms on weighted graph
 • BFS on unweighted graph
 • At least linear complexity, taking hours on large graphs
 – Pre-computing all pairs of shortest path
 • Quadratic space complexity, prohibitive on large graphs
Distance Oracle

- A pre-computed data structure that enables us to find the (approximate) shortest distance between any two vertices in \textit{constant} time.

- Oracle construction
 - Space complexity
 - linear, or sub-linear
 - Time complexity.
 - Quadratic complexity is unaffordable

- Query answering
 - Time complexity
 - \textit{constant time}.
 - Quality
 - Approaching exact shortest distances
Current Solutions

• With performance bound:
 – Thorup-and-Zwick’s distance oracle [Thorup01]
 – Reduce the construction time on weighted [Baswana06] or unweighted graphs [Baswana062],
 – Reduce space cost on power-law graphs [Chen09] or ER random graphs [Enachescu08].

• Heuristic approaches:
 – Sketch based [Potamias09, Gubichev10, Sarma10, Goldberg05, Tretyakov11]
 – Coordinate based [zhao2010,zhao2011]
Thorup-and-Zwick’s distance oracle

• A parameter k
• $O(kn^{1+1/k})$ space, can be constructed within $O(kmn^{1/k})$ time
• Distance query can be answered in $O(k)$ time with at most $2k – 1$ multiplicative distance estimation.

• When $k = 1$, the distance oracle returns the exact distance but occupies quadratic space
• When $k = 2$, the worst distance is 3-times of the exact distance and the oracle occupies $O(n^{1.5})$ space
Coordinate-based solution

• Mapping all vertices into a hyperspace

• Use the distance of two vertices in the hyperspace to approximate the shortest distance in the graph

[Zhao 2010, Zhao 2011]
Coordinate-based solution

• Select landmarks (~100)
 – **Heuristics**: degree, betweenness, ...

• Calculate the exact distance from each landmark to all other vertices by **BFS starting from each landmark**

• Calculate the coordinates of landmarks by **simplex downhill** according to the precise distance among landmarks

• Calculate the coordinates of other vertexes by **simplex downhill** according to the distance from these vertex to each landmark
Sketch-based solution

• Basic idea
 – Create a sketch of bounded size for each vertex
 – Estimate the distance using the sketch

• Advantage
 – linear space
 – If the sketch encodes enough useful information, it can produce highly accurate answers in short time (in most cases in constant time).
Sketch-based solution

• Procedure
 – Select landmarks
 – Generate the shortest distances from each landmark to any other vertex
 • Sketch[u] =\{(w_0, \delta_0), \ldots, (w_r, \delta_r)\}, where w_i is a vertex (called seeds) and \delta_i is the shortest distance between u and w_i
 – Estimate the distance between vertices u and v by the minimal value of d(u,w) + d(w, v) over all w \in L
Improvement on sketch-based solution

• Improve distance estimation
 – cycle elimination and tree-structured sketch [Gubichev10]
 – uses the distance to the least common ancestor of u and v in a shortest path tree [Tretyakov11]

• Improve landmark selection
 – optimal landmark selection is NP-hard
 – betweenness is a good landmark [Potamias09]
 – randomized seed selection [Sarma10]
Distance oracle summary

- Accuracy may be compromised
 - Node degrees, instead of their centrality, is usually used as a criterion for **landmark selection** to reduce the cost.

- Some distance oracles take very long time to create.
 - For example, in [Tretyakov11], it takes 23h to approximate betweenness for a 0.5 billion node graphs [Tretyakov11] even on a 32-core server with 256G memory.

- None of the previous distance oracles is designed for distributed graphs.

- Can hardly scale to billion node graphs on a general purpose graph system
Scale to billion node graphs with high accuracy

- Smart landmark selection
 - in local graphs
- Smart distributed BFS
- Smart answer generation rule

For details:
Towards a Distance Oracle for Billion Node Graphs, Microsoft Technical Report, 2012
Distributed BFS
Asynchronized BFS

• Asynchronized BFS (Bellman-ford)
 – In each iteration, update each vertex’s distance as the minimal distance of its neighbors plus one
 – Any time when a vertex distance is updated, it will trigger all its neighbors to update their distance
 – Until no distance update

• \(O(|V||E|)\), but flexible, allows fine-grained parallelism
Level-synchronized BFS [Andy05]

- Explore from a node level by level

- **Iterate:**
 - Each vertex of level x sends distance update messages to their neighbors
 - Each vertex waits for messages for itself. If its distance is still unknown, update its distance as $x+1$.
 - *Synchronize at the end of each level*

- $O(E)$ complexity
Possible Optimizations

• Observation:
 – Vertices of large degree are frequently visited even their distances to the source have already been computed.

• Optimization:
 – Cache the distances of large degree nodes on each machine

• “80/20” rule in real graphs

• Results on Trinity
 – 50% savings

• Scale-free graph
 \[d(v) = \frac{1}{N^R} r(v)^R \]

For detail: Towards a billion-node graph distance oracle, Microsoft technique report, 2012
Betweenness computation
Betweenness computation

• Betweenness counts the fraction of shortest paths passing through a vertex

• Applications of betweenness
 – Vertex importance ranking
 – Landmark selection in distance oracle
 – Community detection

\[C_B(u) = \sum_{s \neq u \neq t \in V} \frac{\sigma_{st}(u)}{\sigma_{st}} \]

• Where, \(\sigma_{st} \) denotes the number of shortest paths from \(s \) to \(t \), \(\sigma_{st}(u) \) denote the number of shortest paths from \(s \) to \(t \) that pass through \(u \)
Betweenness computation on large graphs

• Exact betweenness costs $O(nm)$ time, unacceptable for large graphs [Brandes01]

• Lightweight approximate betweenness
 • Count shortest paths rooted at sampled vertices [Ercsey10]
 • Count shortest path with limited depth [Bader06][Brandes07]

• Parallelized exact betweenness [Bader06, Madduri09, Edmonds10, Tan09, Tu09]
 – On massive multithreaded computing platform [Bader06, Madduri09],
 – On distributed memory system [Edmonds10]
 – On multi-core systems [Tan09, Tu09].
A distributed view of the graph

Local Graph V_i

Extended Local Graph V_i'

Graph G
A lightweight Distributed betweenness approximation

• On distributed platform
 – Compute the shortest paths within each machines
 – Local shortest path with two ends both in the local core has high quality
 – Sample the local shortest with the probability proportional to its quality
 – Use the high-quality local shortest path to approximate exact betweenness

For detail: Towards a billion-node graph distance oracle, Microsoft technique report, 2012
Distributed computation on graphs

• Computation carried out on a single partition
 – Density of the graph, etc.
 – Derive global results from results on a single partition

• Computation carried out on each single partition
 – Betweenness, connected components, etc.
 – Derive global results by merging results from single partitions

• Network communication reduced.
Local Clustering
Motivation

• In distributed graph systems, remote communications are costly

• To save remote access, we may cache information about remote neighbors

• Local vertices sharing similar remote neighbors should be processed together
A distributed view of the graph

Local Graph V_i

Extended Local Graph V_i'

Graph G
A bipartite view

Local Graph V_i

Extended Local Graph V_i'

Rest of Graph G
Clustering the bipartite view
Analysis

• $G(V, E)$ is partitioned across k machines.

• Each machine has a block B of the graph

• Before reordering
 – Let d be the average remote degree, c be the average size of a remote message
 – On the average, we need
 • $O(d|B|)$ number of remote access
 • $O(d|B|c)$ communication volume

• After reordering
 – In the best case (all local vertices sharing the same remote neighbors)
 • we need $O(d)$ remote access
 • we need $O(dc)$ communication volume
 – A multiplication factor $|B|$ is saved
Related works

• Many bipartite graph algorithms

• Poor scalability
 – Matrix based method, spectral clustering ...
Design constraint

• Cache size constraint S

• For a block, it is possible that $|R(B)| > S$
 – $R(B)$ are the remote neighbors of B

• We cache at most S vertices in $R(B)$
Problem definition

• We have $G'(V_i \cup V - V_i, E')$. Let $X = V_i$, and $Y = V - V_i$

• Partition X into $A_1 \ldots A_t$ and Y into $C_1 \ldots C_t$ such that $|C_i| \leq S$, and maximize $\sum_i E(A_i, C_i)$
 $- E(A_i, C_i) = \#\text{edges between } A_i \text{ and } C_i$

• NP-hard
 $- \text{since bipartite graph partitioning is NP-hard}$
Baseline methods

• Using existing partitioning methods
 – such as METIS

• Challenges:
 – How to set the # of partitions?
 – Balance: How to ensure each $|Y_i| \leq S$?
of Partitions

- For a bipartite graph G and a number t, let $Q(t)$ be the minimal number of cross edges among all possible t-partitioning on G.

- Focus on $\frac{|Y|}{S} \leq t \leq 2 \frac{|Y|}{S}$
 - $Q(t)$ is not necessarily a monotonic
 - Enumerate t from $\frac{|Y|}{S}$ to $2 \frac{|Y|}{S}$ with increment Δt
 - Run METIS for each t
of Partitions

• Why not beyond $2 \frac{|Y|}{S}$?

• Because $t \geq 2 \frac{|Y|}{S} \rightarrow Q(t) \leq Q(t + 1)$
 – Suppose $Q(t) > Q(t + 1)$
 – There must exist two clusters Y_i and Y_j such that $|Y_i| \leq \frac{S}{2}$ and $|Y_j| \leq \frac{S}{2}$
 – We can merge Y_i and Y_j to construct a valid solution for t with at least the same quality
Balance

• Naive Metis is a balanced graph partitioning solution

• We only seek balance on the Y part

• Solution: vertex-weighted graph partitioning
 – Assign weight 0 to each vertex in X
 – Assign weight 1 to each vertex in y
Disadvantage

• Effectiveness
 – Too restrictive on balance
 • metis tends produce Yi of same size
 • we just need each |Yi| is less than S
 – Approximate balance
 • Solution produced by METIS may violate the restriction

• Efficiency
 – METIS does not support billion node graphs
Framework of our solution

Step 1: Generate an initial partitioning with each $|Y_i| \leq S$ -- random partitioning, for large graph

Step 2: Iteratively improve the partitioning

1. Relabel each v in X by the labels of its neighbors in Y
2. Relabel each v in Y by the labels of its neighbors in X
Relabel X

• Relabel v in X greedily
 – Choose the most popular label in v’s neighbors as its new label
 – When there are more than one such most popular labels, we arbitrarily select one
 – Complexity: Linear with #edge
Problem:

• Let $L=\{L_1, \ldots, L_t\}$ be the labels of X. Assign a label in L to each vertex in Y, such that

 – (quality) the number of edges among different labels are minimized
 – (constraint) each label is used by Y no more than S times
Solution: Maximal Flow Maximum Cost (MFMC)

• Cost
 – $\text{Cost}(L_i, v)$ denotes $v \in Y$ being assigned label l_i
 – It equals the number of edges between v and vertices in X with label L_i

• Capacity
 – From source to labels: S
 – From labels to Y: 1
 – From Y to target: 1
How to solve MFMC?

• Cycle Canceling: progressive solution [Ref]
 – Motivation: Directly improve the existing solution
 – Remove one cycle with accumulated w is equivalent to remove w cross edges from the original graph
 – In the worst case, we need $O(M)$ cycle removing

 – Cost to find each cycle: $O(|L|^2|Y|)$
 • Note that our graph is bipartite
 • Using bellman-ford to find cycles with positive weight
 – Its complexity is $O(DL|Y|)$, where D is the maximal shortest path length.
 • We can prove that in the bipartite graph constructed here, $D<=2\#labels+1$
 • Hence, Motivation: Directly improve the existing solution

 – Overall cost: $O(|L|^2|Y|M)$

• Where, M is the number of edges of meta bipartite graph

• Prons
 – Optimal for reliable Y

• Cons
 – costly
Summary of key algorithms

• Most existing graph solutions are designed for centralized platforms
• Power of distributed computing has not been fully exploited for solving challenging graph problems
• Properties of distributed graphs have not been fully explored yet
• Previous existing solutions can hardly scale to real large graphs, especially billion node graphs
References

• [andy05] Andy Yoo, et al, A Scalable Distributed Parallel Breadth-First Search Algorithm on BlueGene/L, SC’05
• [Pellegrini 96] F. Pellegrini et al., “Scotch: A software package for static mapping by dual recursive bipartitioning of process and architecture graphs,” in HPCN Europe ’96
• [Pregel] G. Malewicz et al., “Pregel: a system for large-scale graph processing,” in SIGMOD ’10
References-3

• [Bader06] D. A. Bader and K. Madduri, “Parallel algorithms for evaluating centrality indices in real-world networks,” in *ICPP ’06*.
• [tu09] D. Tu and G. Tan, “Characterizing betweenness centrality algorithm on multi-core architectures,” in *ISPA’09*.
Thanks!